已知,如图,△ABC中,∠BAC=2∠B,AB=2AC,AE平分∠CAB,求证:AE=2CE

来源:学生作业帮助网 编辑:作业帮 时间:2024/06/11 16:45:04
已知,如图,△ABC中,∠BAC=2∠B,AB=2AC,AE平分∠CAB,求证:AE=2CE
xNA_e7/fwvKB+ŘxU-&65JLWjKlkw);mE{.9Af$lo)S4&//k.*6eY*Vm+jkAhQStM(H}ţ*e꫊biFht04eI ?(X9Xf7ŒpbAVQ7:n%wS]vxQ5$mu]q|i ds_Fm]osWbDĆCM430 ;E?ZA+lɑjgl+6\UZ9dxoǝ{vEtIއi;Kdpyi̠(KnRٖ|bK(?/:hzLbk7bbsZB]dX.f7!bθ;~kl' o=$`CxNbR2 7.:  l ) "`ba #ʯE \5&yT>_aSS; %

已知,如图,△ABC中,∠BAC=2∠B,AB=2AC,AE平分∠CAB,求证:AE=2CE
已知,如图,△ABC中,∠BAC=2∠B,AB=2AC,AE平分∠CAB,求证:AE=2CE

已知,如图,△ABC中,∠BAC=2∠B,AB=2AC,AE平分∠CAB,求证:AE=2CE
证明:
取AB的中点D,连接ED
∵AB=2AC
∴AC=AD
∵AE平分∠CAB
∴∠CAE=∠DAE
又∵AE=AE
∴⊿CAE≌⊿DAE(SAS)
∴∠C=∠ADE
∵∠BAC=2∠B
∴∠B=∠EAD
∴AE=BE,即⊿ABE是等腰三角形,DE为底边中线
∴DE⊥BC【三线合一】
∴∠C=∠EDA=90º
∴∠BAC+∠B=90º
∵∠BAC=2∠B
∴∠BAC=60º,∠BAE=30º
∴CE=½AE【30º角所对的直角边等于斜边的一半】
即AE=2CE

因为∠CAE=∠BAC/2=∠B,∠C=∠C所以 △CAE∽△CBA 可知 AE/AB=CE/AC 所以 AE/CE=AB/AC=2 所以 AE=2CE 三角形ABC相似于三角形EAC(不难