1.A为n阶矩阵,且A^2-2A-E=0,求(A+3E)^-12.设n阶方阵A的各行元素之和均为0,切R(A)=n-1,则方程组AX=0的通解是3.若A为3阶方阵,|A|=2,则|3A|+|A*|=4.设A为N阶对称正定阵,证明A可逆,且A^-1也为正定阵

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/01 07:59:43
1.A为n阶矩阵,且A^2-2A-E=0,求(A+3E)^-12.设n阶方阵A的各行元素之和均为0,切R(A)=n-1,则方程组AX=0的通解是3.若A为3阶方阵,|A|=2,则|3A|+|A*|=4.设A为N阶对称正定阵,证明A可逆,且A^-1也为正定阵
xOO0c+[7='dS05I4`A2iv;lUc;mw^W X

1.A为n阶矩阵,且A^2-2A-E=0,求(A+3E)^-12.设n阶方阵A的各行元素之和均为0,切R(A)=n-1,则方程组AX=0的通解是3.若A为3阶方阵,|A|=2,则|3A|+|A*|=4.设A为N阶对称正定阵,证明A可逆,且A^-1也为正定阵
1.A为n阶矩阵,且A^2-2A-E=0,求(A+3E)^-1
2.设n阶方阵A的各行元素之和均为0,切R(A)=n-1,则方程组AX=0的通解是
3.若A为3阶方阵,|A|=2,则|3A|+|A*|=
4.设A为N阶对称正定阵,证明A可逆,且A^-1也为正定阵

1.A为n阶矩阵,且A^2-2A-E=0,求(A+3E)^-12.设n阶方阵A的各行元素之和均为0,切R(A)=n-1,则方程组AX=0的通解是3.若A为3阶方阵,|A|=2,则|3A|+|A*|=4.设A为N阶对称正定阵,证明A可逆,且A^-1也为正定阵
1.根据A^2-2A-E=0有:(A+3E)(A-5)=-14E即(A+3E)(-1/14*A+5/14)=E
(A+3E)^(-1)=-1/14*A+5/14
2.由R(A)=n-1